
In a stereo view, one can tolerate only so much depth before 
parts of the scene just won't stay together anymore.  At that 
point, we say the stereo view won't fuse.  We can tolerate 
more depth in real life than in a stereo view, but why is a 
bit of a mystery.  Maybe it has something to do with some 
things being in focus and some things being out of focus in 
real life.  In a stereo view, conventionally, everything is 
purposely kept in focus because if everything weren't in 
focus, your eyes would feel like they were failing you when 
you looked at an out-of-focus part of the scene.  (However, 
this isn't to say that out-of-focus areas aren't worth 
experimenting with.) 
 
Regardless of the cause, the depth limits of stereo views are 
real, and quantitatively they are fairly well established.  In 
the simplest terms, the total parallax from front to back 
shouldn't exceed an angle of one part in thirty.  So what is 
parallax? 
 
As used here, parallax is short for parallactic disparity.  
There is a disparity between what the left and right eyes see 
and it is due to parallax.  Parallax can be quantified as 
follows: 
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                   Real-life example 
 
 
The difference between the angles is parallax.  Either angle 
could be larger; it is only the difference which counts.  The 
illustration above is supposed to represent a real-life scene, 
but when two images of a stereo pair are projected onto a 
screen, the situation is very much the same: 
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            Projected stereo example 
 
 
As long as parallax is less than one part in thirty (one part 
in 30 is about 2 degrees), the projected scene should be 
fusible by anyone. 
 
As long as angle lp (as an example) is the same in the 
projected version as it was in real life, you are sitting the 
correct distance from the screen (your perspective is 
correct).  If you sit too far away, angle lp decreases and if 
you sit too close, angle lp increases because the separation 
of the image points on the screen doesn't change while your 
distance does.  Of course you could substitute any other 
characteristic angle for lp.  I do know what effect sitting 
too close or too far from the screen has on tolerance for 
parallax so I specify that we always view images from the 
perspectively-correct distance. 
 
In order to make lp of the recreated scene equal to lp of the 
original scene, an image must be viewed from a distance equal 
to the focal length* of the camera's lens (you will need a 
lensed viewer to get this close), or if the image is projected 
or in any other way magnified, from an equivalent distance  
( = magnification times the focal length of camera lens). 
 
Returning to parallax, where does the 1 in 30 figure come 
from?  In a post to the electronic mailing list called photo-
3d, Bob Mannle of New Vision Technology said that the amount 



of parallax in a stereo pair should be held down to about 1.2 
mm for 35 mm stereo (which is usually shot with lenses of 
roughly 36 mm focal length) and it should be held down to 
about 2.7 mm for medium-format stereo (which is often shot 
with lenses of about 80 mm focal length).  Note that these 
figures are each approximately 1/30th of the focal length of 
the camera's lenses. 
 
If we accept that holding the parallax down to one in thirty 
is a reasonable criterion for viewability, then mathematically 
we can easily determine allowable distances from the stereo 
camera to the nearest and farthest objects in the scene given 
the stereobase. 
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Notice how much greater the parallax is in the upper 
illustration than in the lower illustration.  This is because 
the distance to the far object is farther and the distance to 
the near object is nearer in the upper picture than in the 
lower picture.  This increase in parallax is what tells us 
that the objects in the upper picture are farther apart than 
the objects in the lower picture. 
 
If we substitute cameras for the eyes, we will have an 
illustration of the situation we have when we take a stereo 
picture.  This illustration is intended to show another 
effect, the effect of changing stereobase, the distance 
between cameras. 
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Notice how much less the parallax is in the upper illustration 
than in the lower illustration.  This is because the distance 
between the cameras (stereobase) is less in the upper 
illustration. 
We can also look at what goes on inside the two cameras: 
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On-film deviation is a measure of parallax, but in linear 
terms, at the film plane.  Without going into the derivation, 
which is presented elsewhere, the following variables are 
related by the equations given below them: 
 
sb = the stereobase. 
  
f = the focal length of the camera's lenses. 
 
d = on-film deviation; nominal maximum = f/30 
 
an: distance from camera lens to nearest object in scene. 
   
af: distance from camera lens to farthest object in scene. 
 
a = the distance at which the camera is focused 
    Best compromise between an and af is when  
    a = (2*af*an)/(af + an) 
 
It may be shown through geometry and algebra that: 
 
           af*an  
sb  =  d*---------*(1/f - 1/a) (1) 
          af - an  
 
This equation may be rearranged to give the following: 
 
           2*sb*f*a                        a*an 
an = --------------------   and    af = ---------- (2) 
      d*a + 2*sb*f - d*f                 2*an - a 
If you don't like solving these equations, Excel spreadsheets 
are available. 



 
The fine print 
 
* When the distance from the object to the film plane is 
decreased, the distance from the lens to the film plane is 
increased: the lens moves toward the object.  As is clearly 
shown in the last illustration above, the distance from the 
lens to the film is what counts, not the actual focal length 
of the lens.  The two equations given above take this into 
account and keep d at the figure assigned by the user.  Why d 
and not angular parallax?  Well, mostly it's for historical 
reasons.  This effort started with on-film deviation and not 
angular parallax.  Although it would be no great trick to 
reconfigure the equations to use angular parallax instead of 
on-film deviation, even if this were done, there would be no 
cure for the fact that many people do not sit at the correct 
distance from the screen as defined above.  So it is probably 
just as well to leave the equations as they are now.  If 
people do observe from the correct distance, then the 
equations give the correct angular parallax.  The on-film 
deviation is also useful in the sense that it is easy to 
measure on the actual images, unlike angular parallax. 
 
Ideally you would use a viewer lens which has a focal length 
equal to the distance of the lens from the film or, if the 
image is magnified, you would sit at a distance of the image 
magnification times the distance of the lens from the film.  
In practice, occupying approximately the correct position will 
be good enough.   
 
If the camera lens is extended a lot, as in a close-up or 
macro situation, then it might be better to plan ahead.  For 
instance, if the idea is to use a 35 mm format camera to take 
a picture of an object which is only 4 inches (100 mm) away 
using a lens with a focal length of 35 mm, then it would be 
good to recognize that the lens will be about 54 mm from the 
film, not 35 (you will have to rack it out 19 mm from infinty 
to achieve focus), and so you should sit 54 mm times the on-
screen magnification away from the screen, not 35 mm.  This is 
all to the better since the audience for a screening tends to 
sit at least two but usually three or more times the image 
height away from the screen.  In 35 mm format, three times 
image height works out to be about 72 times the image 
magnification away from the screen indicating a lens focal 
length of 72 mm should be used in that format for proper 
perspective. 
 
As a specific example, the 35 mm format is 24 mm high on the 
transparency and, say, 1200 mm (4 feet) high on screen.  This 
is a magnification of 50X.  So if the camera's lenses operated 
at a distance of 54 mm from the film, we should sit at a 
distance of 54 mm times 50X = 2700 mm or 9 feet to achieve the 
proper perspective (giving no stretch or squash distortion).   



 
Another caveat has to do with the exact distance of the 
camera's lenses from the scene.  The distance should actually 
be measured from the entrance pupil since that is the center 
of perspective.  In the equations (1) and (2) above, the 
Gaussian and Newtonian forms of the lens equation were used to 
figure the position of the lens from object and image.  
Fortunately, most lenses are built approximately symmetrical 
and so we can say that the entrance pupil is where the lens is 
without causing an error in the equations.  For a solution to 
the problems caused by asymmetrical lenses, see "Image-side 
Perspective and Stereoscopy" by yours truly, copyright SPIE 
1998. 
 
Is one part in 30 a hard limit or a soft limit?  I think it is 
pretty soft.  There are plenty of examples of "double depth" 
stereo pairs which work well.  I think the key to having more 
depth is to have a gradual transition from near objects to far 
objects.  The most gradual transition might be a stereo pair 
of a lawn.  This boring, featureless picture would extend from 
a few feet away to, essentially, infinity.  There would be no 
"jumps" in depth.  A very sharp transition from front to back 
would be found in a scene showing a flower a few feet away 
with a mountain for its background.  This would be a difficult 
picture to fuse because of high relative disparity between 
flower and mountain. 


